The fractional derivative Kelvin–Voigt model of viscoelasticity with and without volumetric relaxation
نویسندگان
چکیده
منابع مشابه
the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology
abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...
15 صفحه اولWaveform relaxation method for differential equations with fractional-order derivative
In this paper, we present a numerical computational approach for solving Caputo type fractional differential equations. This method is based on approximation of Caputo derivative in terms of integer order derivatives and waveform relaxation method. The utility of the method is shown by applying it to several examples. A comparative study indicates that our approach is more efficient and accurat...
متن کاملFractional Calculus Applied to Model Arterial Viscoelasticity
−− Arterial viscoelasticity can be described using stress-relaxation experiments. To fit these curves, models with springs and dashpots, based on differential equations, were widely studied. However, uniaxial tests in arteries show particular shapes with an initial steep decay and a slow asymptotic relaxation. Recently, fractional order derivatives were used to conceive a new component called s...
متن کاملAnalysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel
Using some investigations based on information theory, the model proposed by Keller and Segel was extended to the concept of fractional derivative using the derivative with fractional order without singular kernel recently proposed by Caputo and Fabrizio. We present in detail the existence of the coupled-solutions using the fixed-point theorem. A detailed analysis of the uniqueness of the coupl...
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2018
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/991/1/012069